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Nonequilibrium phase transition in the kinetic Ising model:
Existence of a tricritical point and stochastic resonance

Muktish Acharyya*
Theoretische Physik, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany

~Received 1 September 1998!

The dynamic phase transition has been studied in the two-dimensional kinetic Ising model in the presence of
a time varying~sinusoidal! magnetic field by Monte Carlo simulation. The nature~continuous or discontinu-
ous! of the transition is characterized by studying the distribution of the order parameter and the temperature
variation of the fourth-order cumulant. For the higher values of the field amplitude the transition observed is
discontinuous and for lower values of the field amplitude it is continuous, indicating the existence of a
tricritical point ~separating the nature of transition! on the phase boundary. The transition is observed to be a
manifestation ofstochastic resonance. @S1063-651X~99!07801-0#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

The kinetic Ising model in the presence of an oscillati
magnetic field gives rise to various interesting dynami
responses@1#. The dynamic phase transition, hysteresis@2#,
andstochastic resonance@3# are the most important dynami
responses of recent interest. Tome and de Oliveira@4# ob-
served and studied the dynamic transition in the kinetic Is
model in the presence of a sinusoidally oscillating magn
field. They solved the mean field dynamic equation of m
tion ~for the average magnetization! of the kinetic Ising
model in the presence of a sinusoidally oscillating magn
field. By defining the order parameter as the time avera
magnetization over a full cycle of the oscillating magne
field they showed that the order parameter vanishes dep
ing upon the value of the temperature and the amplitude
the oscillating field. In the field amplitude and temperatu
plane they have drawn a phase boundary separating dyn
ordered~nonzero value of the order parameter! and disor-
dered~the order parameter vanishes! phases. They@4# have
also predicted atricritical point ~TCP!, separating the natur
~discontinuous/continuous! of the transition on the phas
boundary line. However, such a transition, observed@4# from
the solution of the mean field dynamical equation, is n
truly dynamic. This is because, for the field amplitude le
than the coercive field~at temperature less than the transiti
temperature without any field!, the response magnetizatio
varies periodically but asymmetrically even in the zero f
quency limit; the system remains locked to one well of t
free energy and cannot go to the other one, in the absenc
noise or fluctuations.

Lo and Pelcovits@5# attempted to study the dynamic n
ture of this phase transition~incorporating the effect of fluc-
tuations! in the kinetic Ising model by Monte Carlo~MC!
simulation. In this case, the transition disappears in the z
frequency limit; due to the presence of fluctuations, the m
netization flips to the direction of the magnetic field and t
dynamic order parameter vanishes. However, they@5# have
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not reported any precise phase boundary. Acharyya
Chakrabarti@2# studied the nonequilibrium dynamic phas
transition in the kinetic Ising model in the presence of
oscillating magnetic field by an extensive MC simulatio
They @2# have successfully drawn the phase boundary for
dynamic transition and predicted a tricritical point on it.
was also noticed by them@2# that this dynamic phase trans
tion is associated with the breaking of the symmetry of
dynamic hysteresis loop. In the dynamically disordered~the
value of order parameter vanishes! phase the correspondin
hysteresis loop is symmetric and in the ordered phase it lo
its symmetry~giving a nonzero value of the dynamic ord
parameter!.

Recent studies that reveal the thermodynamic nature
the dynamic transition are on the temperature variations o
susceptibility@2#, the relaxation behavior of the dynamic o
der parameter and the divergence of the time scale~critical
slowing down! @6#, the scaling of the distribution of dynami
order parameter and the divergence of the length scale@7#,
and on the temperature variation of the dynamic correlat
@8#.

Although the existence of a TCP has been predicted fr
the temperature variations of the average order param
@2,4#, a detailed and systematic study has not yet been
formed to detect the nature~continuous/discontinuous! of the
dynamic transition along the dynamic phase boundary.
this paper the statistical distribution of the dynamic ord
parameter has been studied to detect the nature of the
sition, by Monte Carlo simulation in a two-dimensional k
netic Ising model in the presence of an oscillating magne
field. The temperature variation of the fourth-order cumula
@9# ~of the distribution of the dynamic order parameter! has
also been studied to characterize the transition. The rela
between the stochastic resonance@3# and dynamic transition
@2# is also discussed. The paper is organized as follows
Sec. II the model and the MC simulation scheme are d
cussed. Section III contains the simulational results. The
per ends with a summary of the work in Sec. IV.

II. DESCRIPTION OF THE MODEL AND THE
SIMULATION SCHEME

The Hamiltonian of an Ising model~with a ferromagnetic
nearest-neighbor interaction! in the presence of a time vary
218 ©1999 The American Physical Society
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ing magnetic field can be written as

H52J(̂
i j &

sisj2h~ t !(
i

si . ~2.1!

Heresi (561) is the Ising spin variable,J.0 is the ferro-
magnetic spin-spin interaction strength, andh(t) is the sinu-
soidally oscillating~in time but uniform in space! magnetic
field. The time variation ofh(t) can be expressed as

h~ t !5h0cos~vt !, ~2.2!

where h0 is the amplitude andv (52p f ) is the angular
frequency of the oscillating field. The system is in conta
with an isothermal heat bath at temperatureT.

A square lattice~with periodic boundary condition! of lin-
ear sizeL (5100) is considered. The initial condition is th
randomly 50% of all spins are up~11!. At any finite tem-
peratureT, the dynamics of this system has been studied h
by Monte Carlo simulation using Metropolis single spin-fl
dynamics@9#. The transition rate is specified as

W~si→2si !5Min@1,exp~2DH/kBT!#, ~2.3!

where DH is the change in energy due to spin flip (si→
2si) and kB is the Boltzmann constant. Any lattice site
chosen randomly and the spin variable (si

z) is updated ac-
cording to the Metropolis probability.L2 such updates con
stitute the time unit@Monte Carlo step per spin~MCSS!#
here. The magnitude of the fieldh(t) changes after every
MCSS following Eq.~2.2!. The instantaneous magnetizatio
~per site! m(t)5(1/L2)( isi

z has been calculated.
The time averaged~over the complete cycle of the osci

lating magnetic field! magnetizationQ5(1/t)rm(t)dt de-
fines the dynamic order parameter@4#. The frequency isf
50.001 ~kept fixed throughout the study!. So one complete
cycle of the oscillating field takes 1000 MCSS~time period
t51000 MCSS). A time series of magnetizationm(t) has
been generated up to 106 MCSS. This time series contain
103 ~since t51000 MCSS) cycles of the oscillating field
The dynamic order parameterQ has been calculated for eac
such cycle. So the statistics~distribution of Q) is based on
Ns5103 different values ofQ. The fourth-order cumulant@9#
~dynamic order parameter! is defined as

UL51.02^Q4&/3^Q2&2, ~2.4!

where ^Qn&5*QnP(Q)dQ and P(Q) is the normalized
@*P(Q)dQ51# distribution ofQ. The computational spee
recorded is 1.42 million updates per second on an RS60
43p of an IBM cluster.

III. RESULTS

The statistical distributionP(Q) of dynamic order param
eter Q and its temperature dependence have been stu
close to the phase boundary to detect the nature of the
sition. Figure 1 shows the distributions~at a fixed value of
the field amplitude! for three different values of temperatur
Below the transition@Fig. 1~a!# the distribution shows only
two equivalent peaks centered around61. Close to the tran-
sition point @Fig. 1~b!# a third peak centered around zero
t

re

0/

ed
n-

developed. As the temperature increases slightly@Fig. 1~c!#,
the strength of the third peak increases compared to tha
the two other~equivalent! peaks. Above the transition@Fig.
1~d!# only one peak is observed centered around zero. T
indicates@9# that the transition is first order or discontinuou

What is the origin of this kind of first-order transition? T
get the answer to this question the time variation of the m
netizationm(t) is studied~in Fig. 2! for several cycles of the
oscillating magnetic fieldh(t), close to the transition. From
Fig. 2 it is clear that sometimes the system stays in the p
tive well ~of the double well form of the free energy! and
sometimes it stays in the other well. It is obvious that t
best time for the system to switch from one well to the oth
one is when the value of the field is optimum~‘‘good oppor-
tunity’’ ! @3#. So if the system misses one good opportun
~first half period of the oscillating field! to jump to the other
well it has to wait for a new chance~another full period of
the oscillating field!. Consequently, it shows that the res
dence time~staying time in a particular well! can only be
nearly equal to an odd integer multiple of the half peri
~half of the time period of the oscillating field! @3#. This
leads to two consequences.

~a! The distribution of the dynamic order parameterQ
would be peaked around three values:~i! Q'0 when the
system utilizes the good opportunity and goes from one w

FIG. 1. Histograms of the normalized distributions of the d
namic order parameterQ for different temperatures (T
50.20J/kB ,0.28J/kB ,0.30J/kB , and 0.40J/kB) and for the fixed
value of the field amplitudeh0 . All the figures are plotted in the
same scales.
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to the other~marked A in Fig. 2!, ~ii ! Q'21 when the
system misses the good opportunity to go from the nega
well to the positive well and it stays for one~or more! full
period in the negative well~markedB in Fig. 2!, and ~iii !
Q'11 when the system misses the good opportunity to
from the positive well to the negative well and spends o
~or more! full period in the positive well~markedC in Fig.
2!. As a result, the distribution ofQ would give three distinct
peaks centered at11, 21, and 0.

~b! The other consequence of this kind of time variati
of magnetizationm(t) is thestochastic resonance. This can
be detected from the distribution of the residence time~the
time the system spends in a particular well!. From Fig. 2 it is
clear that the distributionPr of the residence timet r will be
multiply peaked around the odd integer multiple of the h
period @3#. One such distribution is shown in Fig. 3. Th
distribution shows multiple peaks around the odd integer v
ues~500, 1500, 2500, 3500, 4500, and 5500 MCSS! of the
half period (t/25500 MCSS of the driving fields!. The
heights of the peaks decrease exponentially~dotted line in
Fig. 3! with the peak positions. This is the identifying cha
acteristic of stochastic resonance@3#.

The fourth-order cumulant@9# UL has been plotted
against the temperature. In the case of a discontinuous
sition, the simultaneous appearance of three peaks~of the
distribution of dynamic order parameter! is responsible for a
very high value of̂ Q4& ~compared to the value of 3^Q2&2)

FIG. 2. Time variation of the magnetic fieldh(t) ~solid line! and
magnetization m(t) ~dotted line! close to the transition (T
50.3J/kB andh052.0J).

FIG. 3. Histogram of the normalized@*Pr(t r)dt r51# distribu-
tion @Pr(t r)# of the residence time (t r). The dotted line is the
exponential best fit of the envelope of the distribution.
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at the transition point. This will lead to a deep minimu
~with a large negative value! of the fourth-order cumulantUL
at the transition point. So the deep minimum correspond
the first-order transition and the position of minimum is r
lated to the transition point~Fig. 4!. From the above obser
vations it is clear that the transition~across the upper part o
the dynamic phase boundary! is first order and a manifesta
tion of the stochastic resonance.

Figure 5 shows the distributions of the dynamic ord
parameterQ for three different values of the temperatur
Here the field amplitudeh0 is quite low in comparison to tha
used in the earlier case~Fig. 1!. It shows that, in the ordered
region, this gives two~equivalent! peaks@Fig. 5~a!# and as
the temperature increases these two peaks come close to
other continuously@Fig. 5~b!# and close to the transition~and
also above it! @Fig. 5~c!# only one peak~centered around

FIG. 4. Temperature~T! variation of the fourth-order Binder
cumulant. A deep minimum indicates that the transition is first
der and the position of minimum is the transition point.

FIG. 5. Normalized distributions of the dynamic order para
eterQ ~in second order and close to the transition region! for three
different temperatures (T51.48J/kB ,1.50J/kB , and 1.55J/kB) and
fixed field amplitudeh050.3J.
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zero! is observed. This feature reveals the continuous
second-order transition@9#. The second-order transition i
also characterized by the temperature variation of the fou
order cumulantUL @Eq. ~2.4!#. Figure 6 shows thatUL con-
tinuously decreases from 2/3 to zero revealing the seco
order phase transition@9#. It should be mentioned here tha
the temperature variation of the cumulant and the finite-s
study~in the continuous transition region! has been made b
Sideset al. @7#; here it has been reexamined for comple
ness. It is important to note that they@7# studied the dynamic
transition by varying the frequency~keeping the temperatur
and field amplitude fixed!, whereas the present study h
been done by varying the temperature~fixing the frequency
and amplitude of the field!. However, it is believed that the
results are qualitatively invariant under the choice of the t
able parameter.

IV. SUMMARY

The nonequilibrium dynamic phase transition has be
studied in the kinetic Ising model in the presence of a ti
varying~sinusoidal! magnetic field by the Monte Carlo simu
lation. The nature of the transition is characterized by stu
ing the distribution of the order parameter and the tempe
ture variation of the fourth-order cumulant. For the high
values of the field amplitude the transition observed is d

FIG. 6. Temperature~T! variation of the fourth-order cumulan
(UL) for a fixed value of the field amplitude (h050.3J).
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continuous and for lower values of the field amplitude it
continuous. This indicates that there is a tricritical po
@separating the nature~continuous/discontinuous! of the dy-
namic transition# located on the dynamic phase bounda
These observations support the earlier predictions@2,4# of a
TCP on the phase boundary. The residence time distribu
shows that the transition is a manifestation of a stocha
resonance. A lengthy computational effort is required to fi
the precise location of the tricritical point. It would be inte
esting to know whether or not the TCP can act as a limit
the stochastic resonance~along the first-order line!. An ex-
tensive investigation is currently under way in this directi
and the results will be reported elsewhere.

The detailed finite-size study has been performed by S
et al. @7# and they have not observed any discontinuous tr
sition. They studied the dynamic transition in the very-hig
frequency range. For a very high frequency, the tricritic
point will shift towards the zero temperature@10# ~the region
of the first-order transition on the phase boundary will
very short!. For this reason Sideset al. overlooked the part
of the dynamic phase boundary corresponding to the fi
order transition. The first-order region of the dynamic pha
boundary can be observed clearly in the low-frequen
range.

Experimental evidence@11# of the dynamic transition has
been found recently. Dynamical symmetry breaking~associ-
ated with the dynamic transition! of the hysteresis loop
across the transition point has been observed in highly an
tropic ~Ising like! and ultrathin Co/Cu~001! ferromagnetic
films by the surface magneto-optic Kerr effect. Dynamic
symmetry breaking of the hysteresis loop has also been
served@12# in ultrathin Fe/W~110! films. However, the de-
tailed investigation has not yet been made to study the
namic phase boundary and the nature~continuous/
discontinuous! of the transition.
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